
Rev.4287C–USB–11/04

USB
Microcontrollers

AT89C5131A
USB Bootloader
Features
• Protocol

– USB Used as Physical Layer
– Device Firmware Upgrade Class Compliant
– USB Clock Auto-Configuration

• In-System Programming
– Read/Write Flash and EEPROM Memories
– Read Device ID
– Full-chip Erase
– Read/Write Configuration Bytes
– Security Setting from ISP Command
– Remote Application Start Command

• In-Application Programming/Self Programming (IAP)
– Read/Write Flash and EEPROM Memories
– Read Device ID
– Block Erase
– Read/Write Configuration Bytes
– Bootloader Start

Description
This document describes the USB bootloader functionalities as well as the USB proto-
col to efficiently perform operations on the on-chip Flash (EEPROM) memories.
Additional information on the AT89C5131A product can be found in the AT89C5131A
datasheet and the AT89C5131A errata sheet available on the Atmel web site.

The bootloader software package (binary) currently used for production is available
from the Atmel web site.

Bootloader Revision Purpose of Modifications Date

Revisions 1.0.2 (and above) First release 25/03/2003

Functional
Description

The AT89C5131A bootloader facilitates In-System Programming and In-Application
Programming.

In-System Programming
Capability (IAP)

In-System Programming allows the user to program or reprogram a microcontroller on-
chip Flash memory without removing it from the system and without the need of a pre-
programmed application.

The USB bootloader can manage a communication with a host through the USB bus. It
can also access and perform requested operations on the on-chip Flash memory.

In-Application
Programming or Self
Programming Capability
(ISP)

In-Application Programming (IAP) allows the reprogramming of a microcontroller on-
chip Flash memory without removing it from the system and while the embedded appli-
cation is running.

The USB bootloader contains some Application Programming Interface routines named
API routines that allow IAP by using the user’s firmware.

Block Diagram This section describes the different parts of the bootloader. Figure 1 shows the on-chip
bootloader and IAP processes.

Figure 1. Bootloader Process Description

ISP Communication
Management

User
Application

USB Protocol
Communication

Management

Flash
Memory

External Host Via the

Flash Memory

IAP

Management
User Call

On-chip
2 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
ISP Communication
Management

The purpose of this process is to manage the communication and its protocol between
the on-chip bootloader and an external device (host). The on-chip bootloader imple-
ments a USB protocol (see section “Protocol”). This process translates serial
communication frames (USB) into Flash memory accesses (read, write, erase...).

User Call Management Several Application Program Interface (API) calls are available to the application pro-
gram to selectively erase and program Flash pages. All calls are made through a
common interface (API calls) included in the bootloader. The purpose of this process is
to translate the application request into internal Flash memory operations.

Flash Memory Management This process manages low level access to the Flash memory (performs read and write
access).

Bootloader Configuration

Configuration and
Manufacturer Information

The table below lists Configuration and Manufacturer byte information used by the boot-
loader. This information can be accessed through a set of API or ISP commands.

Mnemonic Description Default Value

BSB Boot Status Byte FFh

SBV Software Boot Vector FCh

SSB Software Security Byte FFh

EB Extra Byte FFh

P1_CF Port 1 Configuration FEh

P3_CF Port 3 Configuration FFh

P4_CF Port 4 Configuration FFh

Manufacturer 58h

Id1: Family code D7h

Id2: Product Name F7h

Id3: Product Revision DFh
3
4287C–USB–11/04

Mapping and Default Value of
Hardware Security Byte

The 4 MSB of the Hardware Byte can be read/written by software (this area is called
Fuse bits). The 4 LSB can only be read by software and written by hardware in parallel
mode (with parallel programmer devices).

Note: U: Unprogrammed = 1
P: Program = 0

Security The bootloader has Software Security Byte (SSB) to protect itself from user access or
ISP access.

The Software Security Byte (SSB) protects from ISP accesses. The command "Program
Software Security Bit" can only write a higher priority level. There are three levels of
security:

• Level 0: NO_SECURITY (FFh)
This is the default level.
From level 0, one can write level 1 or level 2.

• Level 1: WRITE_SECURITY (FEh)
In this level it is impossible to write in the Flash memory.
The Bootloader returns an err_WRITE status.
From level 1, one can write only level 2.

• Level 2: RD_WR_SECURITY (FCh)
Level 2 forbids all read and write accesses to/from the Flash memory.
The Bootloader returns an err_WRITE or an err_VENDOR status.

Only a full chip erase command can reset the software security bits.

Bit Position Mnemonic Default Value Description

7 X2B U To start in x1 mode

6 BLJB P To map the boot area in code area between F800h-FFFFh

5 OSCON1 U Oscillator control (bit 1)

4 OSCON0 U Oscillator control (bit 0)

3 reserved U

2 LB2 P

To lock the chip (see datasheet)1 LB1 U

0 LB0 U

Level 0 Level 1 Level 2

Flash/EEPROM Any access allowed Read only access allowed All access not allowed

Fuse bit Any access allowed Read only access allowed All access not allowed

BSB & SBV & EB Any access allowed Any access allowed Any access allowed

SSB Any access allowed Write level2 allowed Read only access allowed

Manufacturer info Read only access allowed Read only access allowed Read only access allowed

Bootloader info Read only access allowed Read only access allowed Read only access allowed

Erase block Allowed Not allowed Not allowed

Full chip erase Allowed Allowed Allowed

Blank Check Allowed Allowed Allowed
4 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
In-System
Programming

ISP allows the user to program or reprogram a microcontroller’s on-chip Flash memory
through the USB bus without removing it from the system and without the need of a pre-
programmed application.

This section describes how to start the USB bootloader and the higher level protocol
over the USB.

Boot Process The bootloader can be activated in two ways:

• Hardware conditions

• Regular boot process

Figure 2 and Figure 3 describe the boot process flows for low pin count and high pin
count products.

High Pin Count Hardware
Conditions

The Hardware conditions (EA = 1, PSEN = 0) during the RESET rising edge force the
on-chip bootloader execution. In this way the bootloader can be carried out regardless
of the user Flash memory content.

As PSEN is an output port in normal operating mode (running user application or boot-
loader code) after reset, it is recommended to release PSEN after rising edge of reset
signal. The hardware conditions are sampled at reset signal rising edge, thus they can
be released at any time when reset input is high.

Low Pin Count Hardware
Conditions

The Hardware Condition forces the bootloader execution from reset.

The default factory Hardware Condition is assigned to port P1.

• P1 must be equal to FEh

In order to offer the best flexibility, the user can define its own Hardware Condition on
one of the following Ports:

• Port1

• Port3

• Port4 (only bit0 and bit1)

The Hardware Condition configuration are stored in three bytes called P1_CF, P3_CF,
P4_CF.

These bytes can be modified by the user through a set of API or through an ISP
command.

There is a priority between P1_CF, P3_CF and P4_CF (see Figure 3 on page 8).

Note: The BLJB must be at 0 (programmed) to be able to restart the bootloader.
If the BLJB is equal to 1 (unprogrammed) only the hardware parallel programmer can
change this bit (see AT89C5131A datasheet for more details).
5
4287C–USB–11/04

Software Boot Vector The default value [FF]00h is used in ISP mode. The boot address is, in this mode, the
lowest adress of FM1 USB bootloader.

The Software Boot Vector (SBV) can be used to force the execution of a user bootloader
starting at address [SBV]00h in the application area (FM0).

The way to start this user bootloader is described in section “Boot Process”.

FLIP Software Program FLIP is a PC software program running under Windows® 9x/Me/2000/XP and Linux®

which can be used in ISP mode and which supports all Atmel C51 Flash microcontroller
and USB protocol communication media.

The FLIP software program is free and is available from the Atmel web site.

USB Bootloader

Application
User Bootloader

[SBV]00h
FM1

FM0

[FC]00h
6 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Figure 2. High-pin Count Regular Boot Process

RESET

BLJB = 1

Hardware
Condition

S tart Bootloader

FCON = 00h

SBV < 7Fh

S tart User BootloaderStart Application

Yes

No

Yes

Yes

No

No

H
ar

dw
ar

e
B

oo
t P

ro
ce

ss
S

of
tw

ar
e

B
oo

t P
ro

ce
ss

B it ENBOOT in AUXR1 Register is
Initialized with BLJB inverted

ENBOOT = 1
PC = F400h
FCON = 0Fh

ENBOOT = 0
PC = 0000h

ENBOO T = 1
PC = F400h
FCON = 00hYes

No
7
4287C–USB–11/04

Figure 3. Low-pin Count Regular Boot Process

RESET

BLJB = 1

P1_CF = FFh

P3_CF = FFh

P4_CF = FFh

P1_CF = P1

P3_CF = P3

P4_CF = P4

Start Bootloader

BSB = 0

SBV < 7Fh

Start User BootloaderStart Application

Yes

No

No

No

No

Yes

Yes

Yes
Yes

Yes

Yes

No

No

No

Yes

Yes

No

No

H
ar

dw
ar

e
B

oo
t P

ro
ce

ss
S

of
tw

ar
e

B
oo

t P
ro

ce
ss

Bit ENBOOT in AUXR1 Register is
Initialized with BLJB Inverted

ENBOOT = 1
PC = F400h

ENBOOT = 0
PC = 0000h
8 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Physical Layer The USB norm specifies all the transfers over the USB line. The USB specification also
includes several CLASS and SUB-CLASS specifications. These stand-alone documents
are used by the manufacturer to implement a USB link between a PC and a device sup-
porting the In System Programming. Mostly, the USB specification is implemented by
hardware (automatic reply, handshakes, timings, ...) and the USB Classes and Sub-
Classes are implemented by software at a data level.

Figure 4. USB Bus Topography

The USB is used to transmit information that has the following configuration:

• USB DFU using the Default Control Endpoint only (endpoint 0) with a 32 bytes
length.

• 48 MHz for USB controller: USB clock configuration performed by the bootloader

48 MHz Frequency Auto-
Configuration

The bootloader includes a function which will automatically setup the PLL frequency
(48MHz) versus the different XTAL configuration used on the application.

The table below shows the allowed frequencies compatible with the USB bootloader
48 MHz auto-generation.

PC (Host)

Application (Device)
USB Line

Downstream Transfer: OUT

Upstream Transfer: IN

PC Driver
PC Application

Device driver/API
Firmware

6 MHz 8 MHz 12 MHz 16 MHz 20 MHz 24 MHz 32 MHz 40 MHz 48 MHz

X1 or X2
Clock
Modes

OK OK OK OK OK OK OK OK OK
9
4287C–USB–11/04

Figure 5. 48 MHz Frequency Auto-Configuration

MAIN

USB Connected?
Suspend/Resume

Configure PLL for
Frequency X

Configure Timer 0

SOF Detected?

Timer 0 Overflow?

USB Scheduler

Change Frequency

Resume
Detected?

Yes

No

No

Yes

Yes

No

Yes

No
10 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Protocol

Device Firmware Upgrade
Introduction

Device Firmware Upgrade is the mechanism for accomplishing the task of upgrading the
device firmware. Any class of USB device can exploit this capability by supporting the
requirements specified in this document.

Because it is impractical for a device to concurrently perform both DFU operations and
its normal run-time activities, those normal activities must cease for the duration of the
DFU operations. Doing so means that the device must change its operating mode; i.e., a
printer is not a printer while it is undergoing a firmware upgrade; it is a PROM program-
mer. However, a device that supports DFU is not capable of changing its mode of
operation on its own. External (human or host operating system) intervention is
required.

DFU Specific Requests

In addition of the USB standard requests, 7 DFU class-specific requests are employed
to accomplish the upgrade operations (Table 1):

DFU Descriptors Set The device exports the DFU descriptor set, which contains:

• A DFU device descriptor

• A single configuration descriptor

• A single interface descriptor (including descriptors for alternate settings, if present)

• A single functional descriptor

DFU Device Descriptor This descriptor is only present in the DFU mode descriptor set. The DFU class code is
reported in the bDeviceClass field of this descriptor.

Table 2. USB Parameters

Table 1. DFU Class-specific Requests

bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_DETACH (0) wTimeout Interface (4) Zero none

0010 0001b DFU_DNLOAD (1) wBlock Interface (4) Length Firmware

1010 0001b DFU_UPLOAD (2) wBlock Interface (4) Length Firmware

1010 0001b DFU_GETSTATUS (3) Zero Interface (4) 6 Status

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) Zero none

1010 0001b DFU_GETSTATE (5) Zero Interface (4) 1 State

0010 0001b DFU_ABORT (6) Zero Interface (4) Zero none

Parameter Atmel – AT89C5131A Bootloader

Vendor ID 0x03EB

Product ID 0x2FFD

Release Number 0x0000
11
4287C–USB–11/04

Table 3. DFU Mode Device Descriptor

DFU Configuration Descriptor This descriptor is identical to the standard configuration descriptor described in the USB
DFU specification version 1.0, with the exception that the bNumInterfaces field must
contain the value 01h.

DFU Interface Descriptor This is the descriptor for the only interface available when operating in DFU mode.
Therefore, the value of the bInterfaceNumber field is always zero.

Table 4. DFU Mode Interface Descriptor

Note: 1. Alternate settings can be used by an application to access additional memory segments. In this case, it is suggested that
each alternate setting employ a string descriptor to indicate the target memory segment; e.g., “EEPROM”. Details concern-
ing other possible uses of alternate settings are beyond the scope of this document. However, their use is intentionally not
restricted because the authors anticipate that implementers will devise additional creative uses for alternate settings.

Offset Field Size Value Description

0 bLength 1 12h Size of this descriptor, in bytes

1 bDescriptorType 1 01h DFU FUNCTIONAL descriptor type

2 bcdUSB 2 0100h USB specification release number in binary coded decimal

4 bDeviceClass 1 FEh Application Specific Class Code

5 bDeviceSubClass 1 01h Device Firmware Upgrade Code

6 bDeviceProtocol 1 00h The device does not use a class specific protocol on this interface

7 bMaxPacketSize0 1 32 Maximum packet size for endpoint zero

8 idVendor 2 03EBh Vendor ID

10 idProduct 2 2FFDh Product ID

12 bcdDevice 2 0x0000 Device release number in binary coded decimal

14 iManufacturer 1 0 Index of string descriptor

15 iProduct 1 0 Index of string descriptor

16 iSerialNumber 1 0 Index of string descriptor

17 bNumConfigurations 1 01h One configuration only for DFU

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor, in bytes

1 bDescriptorType 1 04h INTERFACE descriptor type

2 bInterfaceNumber 1 00h Number of this interface

3 bAlternateSetting 1 00h Alternate setting(1)

4 bNumEndpoints 1 00h Only the control pipe is used

5 bInterfaceClass 1 FEh Application Specific Class Code

6 bInterfaceSubClass 1 01h Device Firmware Upgrade Code

7 bInterfaceProtocol 1 00h The device doesn’t use a class specific protocol on this interface

8 iInterface 1 00h Index of the String descriptor for this interface
12 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
DFU Functional Descriptor

Table 5. DFU Functional Descriptor

Command Description This protocol allows to:

• Initiate the communication

• Program the Flash or EEPROM Data

• Read the Flash or EEPROM Data

• Program Configuration Information

• Read Configuration and Manufacturer Information

• Erase the Flash

• Start the application

Overview of the protocol is detailed in Appendix-A.

Offset Field Size Value Description

0 bLength 1 07h Size of this descriptor, in bytes

1 bDescriptorType 1 21h DFU FUNCTIONAL descriptor type

2 bmAttributes 1 Bit mask

DFU Attributes:

bit 7..3: reserved

bit 2: device is able to communicate via USB after Manifestation
phase 1 = yes, 0 = no, must see bus reset

bit 1: bitCanUpload : upload capable 1 = yes, 0 = no

bit 0: bitCanDnload : download capable 1 = yes, 0 = no

3 wDetachTimeOut 2 Number

Time in milliseconds that the device will wait after receipt of the
DFU_DETACH request.

If this time elapses without a USB reset, the device will terminate the
Reconfiguration phase and revert back to normal operation. This
represents the maximum time that the device can wait (depending on
its timers, ...). The Host may specify a shorter timeout in the
DFU_DETACH request.

5 wTransferSize 2 Number
Maximum number of bytes that the device can accept per control-
write transaction
13
4287C–USB–11/04

Device Status

Get Status The Host employs the DFU_GETSTATUS request to facilitate synchronization with the
device. This status gives information on the execution of the previous request: in
progress/OK/Fail/...

The device responds to the DFU_GETSTATUS request with a payload packet contain-
ing the following data:

Table 6. DFU_GETSTATUS Response

bmRequestType bRequest wValue wIndex wLength Data

1010 0001b DFU_GETSTATUS (3) Zero Interface (4) 6 Status

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) Zero none

Offset Field Size Value Description

0 bStatus 1
Numb

er
An indication of the status resulting from the
execution of the most recent request.

1 bwPollTimeOut 3
Numb

er

Minimum time in milliseconds that the host
should wait before sending a subsequent
DFU_GETSTATUS. The purpose of this field is to
allow the device to dynamically adjust the
amount of time that the device expects the host
to wait between the status phase of the next
DFU_DNLOAD and the subsequent solicitation
of the device’s status via DFU_GETSTATUS.

4 bState 1
Numb

er

An indication of the state that the device is going
to enter immediately following transmission of
this response.

5 iString 1 Index Index of status description in string table.

Table 7. bStatus values

Status Value Description

OK 0x00 No error condition is present

errTARGET 0x01 File is not targeted for use by this device

errFILE 0x02 File is for this device but fails some vendor-specific verification test

errWRITE 0x03 Device id unable to write memory

errERASE 0x04 Memory erase function failed

errCHECK_ERASED 0x05 Memory erase check failed

errPROG 0x06 Program memory function failed

errVERIFY 0x07 Programmed memory failed verification

errADDRESS 0x08 Cannot program memory due to received address that is out of range

errNOTDONE 0x09 Received DFU_DNLOAD with wLength = 0, but device does not think it has all the data yet.

errFIRMWARE 0x0A Device’s firmware is corrupted. It cannot return to run-time operations
14 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Table 8. bState Values

Clear Status Any time the device detects an error and reports an error indication status to the host in
the response to a DFU_GETSTATUS request, it enters the dfuERROR state. The
device cannot transition from the dfuERROR state, after reporting any error status, until
after it has received a DFU_CLRSTATUS request. Upon receipt of DFU_CLRSTATUS,
the device sets a status of OK and transitions to the dfuIDLE state. Only then is it able to
transition to other states.

errVENDOR 0x0B iString indicates a vendor-specific error

errUSBR 0x0C Device detected unexpected USB reset signaling

errPOR 0x0D Device detected unexpected power on reset

errUNKNOWN 0x0E Something went wrong, but the device does not know what it was

errSTALLEDPK 0x0F Device stalled an unexpected request

Table 7. bStatus values (Continued)

Status Value Description

State Value Description

appIDLE 0 Device is running its normal application

appDETACH 1
Device is running its normal application, has received the DFU_DETACH
request, and is waiting for a USB reset

dfuIDLE 2 Device is operating in the DFU mode and is waiting for requests

dfuDNLOAD-SYNC 3
Device has received a block and is waiting for the Host to solicit the
status via DFU_GETSTATUS

dfuDNBUSY 4 Device is programming a control-write block into its non volatile memories

dfuDNLOAD-IDLE 5
Device is processing a download operation. Expecting DFU_DNLOAD
requests

dfuMANIFEST-SYNC 6

Device has received the final block of firmware from the Host and is
waiting for receipt of DFU_GETSTATUS to begin the Manifestation phase

or

device has completed the Manifestation phase and is waiting for receipt
of DFU_GETSTATUS.

dfuMANIFEST 7 Device is in the Manifestation phase.

dfuMANIFEST-WAIT-
RESET

8
Device has programmed its memories and is waiting for a USB reset or a
power on reset.

dfuUPLOAD-IDLE 9
The device is processing an upload operation. Expecting DFU_UPLOAD
requests.

dfuERROR 10 An error has occurred. Awaiting the DFU_CLRSTATUS request.

bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) 0 None
15
4287C–USB–11/04

Device State This request solicits a report about the state of the device. The state reported is the cur-
rent state of the device with no change in state upon transmission of the response. The
values specified in the bState field are identical to those reported in DFU_GETSTATUS.

DFU_ABORT request The DFU_ABORT request enables the device to exit from certain states and return to
the DFU_IDLE state. The device sets the OK status on receipt of this request. For more
information, see the corresponding state transition summary.

Programming the Flash or
EEPROM Data

The firmware image is downloaded via control-write transfers initiated by the
DFU_DNLOAD class-specific request. The host sends between bMaxPacketSize0 and
wTransferSize bytes to the device in a control-write transfer. Following each down-
loaded block, the host solicits the device status with the DFU_GETSTATUS request.

As described in the USB DFU Specification, "Firmware images for specific devices are,
by definition, vendor specific. It is therefore required that target addresses, record sizes,
and all other information relative to supporting an upgrade are encapsulated within the
firmware image file. It is the responsibility of the device manufacturer and the firmware
developer to ensure that their devices can consume these encapsulated data. With the
exception of the DFU file suffix, the content of the firmware image file is irrelevant to the
host."

Firmware image:

• 32 bytes: Command

• X bytes: X is the number of byte (00h) added before the first significative byte of the
firmware. The X number is calculated to align the beginning of the firmware with the
flash page. X = start_address [32]. For example, if the start address is 00AFh
(175d), X = 175 [32] = 15.

• The firmware

• The DFU Suffix on 16 Bytes.

Table 9. DFU File Suffix

bmRequestType bRequest wValue wIndex wLength Data

1010 0001b DFU_GETSTATE (5) Zero Interface (4) 1 State

bmRequestType bRequest wValue wIndex wLength Data

1010 0001b DFU_ABORT (6) Zero Interface (4) 0 None

Offset Field Size Value Description

-0 dwCRC 4 Number The CRC of the entire file, excluding dwCRC

-4 bLength 1 16 The length of this DFU suffix including dwCRC

-5 ucDfuSignature 3

5 : 44h

6 : 46h

7 : 55h

The unique DFU signature field

-8 bcdDFU 2
BCD

0100h
DFU specification number

-10 idVendor 2 ID
The vendor ID associated with this file. Either FFFFh
or must match device’s vendor ID
16 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Request From Host

Write Command

The write command is 6 bytes long. In order to reach the USB specification of the Con-
trol type transfers, the write command is completed with 26 (= 32 - 6) non-significant
bytes. The total length of the command is then 32 bytes, which is the length of the
Default Control Endpoint.

Firmware The firmware can now be downloaded to the device. In order to be in accordance with
the Flash page size (128 bytes), X non-significant bytes are added before the first byte
to program. The X number is calculated to align the beginning of the firmware with the
Flash page. X = start_address [32]. For example, if the start address is 00AFh (175d), X
= 175 [32] = 15.

DFU Suffix The DFU suffix of 16 bytes are added just after the last byte to program. This suffix is
reserved for future use.

-12 idProduct 2 ID
The product ID associated with this file. Either FFFFf
or must match the device’s product ID

-14 bcdDevice 2 BCD
The release number of the device associated with
this file. Either FFFFh or a BCD firmware release or
version number

Offset Field Size Value Description

bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_DNLOAD (1) wBlock Interface (4) Length Firmware

Command
Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_prog_start

01h

00h

start_address end_address

Init FLASH programming

01h
Init EEPROM
programming
17
4287C–USB–11/04

Figure 6. Example of Firmware Download Zero Length DFU_DNLOAD Request

The Host sends a DFU_DNLOAD request with the wLength field cleared to 0 to the
device to indicate that it has completed transferring the firmware image file. This is the
final payload packet of a download operation.

This operation should be preceded by a Long Jump address specification using the cor-
responding Flash command.

Answers from Bootloader After each program request, the Host can request the device state and status by send-
ing a DFU_GETSTATUS message.
If the device status indicates an error, the host can send a DFU_CLRSTATUS request
to the device.

OUT Prog_Start + (EP0 fifo length - 6) x 00h

SETUP DFU_DNLOAD

OUT X offset bytes + Firmware Packet 1

OUT Firmware Packet 2

OUT Firmware Packet n + DFU suffix

IN ZLP
18 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Reading the Flash or
EEPROM Data

The flow described below allows the user to read data in the Flash memory or in the
EEPROM data memory. A blank check command on the Flash memory is possible with
this flow.

This operation is performed in 2 steps:

1. DFU_DNLOAD request with the read command (6 bytes)

2. DFU_UPLOAD request which correspond to the immediate previous command.

First Request from Host The Host sends a DFU Download request with a Display command in the data field.

Second Request from Host The Host sends a DFU Upload request.

Answers from the Device The device send to the Host the firmware from the specified start address to the end
address.

Command
Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_display_data

03h

00h

start_address end_address

Display FLASH Data

01h Blank Check in FLASH

02h Display EEPROM Data

OUT Display_Data (6 bytes)

SETUP DFU_DNLOAD

IN ZLP

IN Firmware Packet 1

IN Firmware Packet 2

IN Firmware Packet n

OUT ZLP

SETUP DFU_UPLOAD
19
4287C–USB–11/04

Answers from the Device to a
Blank Check Command

The Host controller send a GET_STATUS request to the device. Once internal blank
check has been completed, the device sends its status.

• If the device status is “OK”:
the device memory is then blank and the device waits the next Host request.

• If the device status is “errCHECK_ERASED”:
the device memory is not blank. The device waits for an DFU_UPLOAD request to
send the first address where the byte is not 0xFF.

Programming
Configuration
Information

The flow described below allows the user to program Configuration Information regard-
ing the bootloader functionality.

• Boot Process Configuration:

– BSB

– SBV

– P1_CF, P3_CF and P4_CF

– Fuse bits (BLJB, X2 and OSCON bits) (see section “Mapping and Default
Value of Hardware Security Byte”)

Take care that the Program Fuse bit command programs the 4 Fuse bits at the same
time.

Request from Host To start the programming operation, the Host sends DFU_DNLOAD request with the
Write command in the data field (6 bytes).

Answers From Bootloader The device has two possible answers to a DFU_GETSTATUS request:

• If the chip is protected from program access, a “err_WRITE” status is returned to the
Host.

• Otherwise, the device status is “OK“.

Command
Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_write_command

04h

01h

00h

Value

Write value in BSB

01h Write value in SBV

02h Write P1_CF

03h Write P3_CF

04h Write P4_CF

05h Write value in SSB

06h Write value in EB

02h 00h Value
Write value in Fuse
(HSB)

OUT Write_command (6 bytes)

SETUP DFU_DNLOAD

IN ZLP
20 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Reading Configuration
Information or Manufacturer
Information

The flow described below allows the user to read the configuration or manufacturer
information.

Requests From Host To start the programming operation, the Host sends DFU_DNLOAD request with the
Read command in the data field (2 bytes).

Command
Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_read_command

05h

00h

00h Read Bootloader Version

01h Read Device boot ID1

02h Read Device boot ID2

01h

00h Read BSB

01h Read SBV

02h Read P1_CF

03h Read P3_CF

04h Read P4_CF

05h Read SSB

06h Read EB

30h Read Manufacturer Code

31h Read Family Code

60h Read Product Name

61h Read Product Revision

02h 00h Read HWB

OUT Read_command (2 bytes)

SETUP DFU_DNLOAD

IN ZLP
21
4287C–USB–11/04

Answers from Bootloader The device has two possible answers to a DFU_GETSTATUS request:

• If the chip is protected from program access, an “err_VENDOR” status is returned to
the Host.

• Otherwise, the device status is “OK“. The Host can send a DFU_UPLOAD request
to the device in order the value of the requested field.

Erasing the Flash The flow described below allows the user to erase the Flash memory.

Two modes of Flash erasing are possible:

• Full Chip erase

• Block erase

The Full Chip erase command erases the whole Flash (32 Kbytes) and sets some Con-
figuration Bytes at their default values:

• BSB = FFh

• SBV = FFh

• SSB = FFh (NO_SECURITY)

The Block erase command erases only a part of the Flash.

Three Blocks are defined in the AT89C5131A:

• block0 (From 0000h to 1FFFh)

• block1 (From 2000h to 3FFFh)

• block2 (From 4000h to 7FFFh)

Request from Host To start the erasing operation, the Host sends a DFU_DNLOAD request with a Write
Command in the data field (2 bytes).

IN Byte value (1 byte)

SETUP DFU_UPLOAD

OUT ZLP

Command
Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_write_command

04h
00h

00h Erase block0 (0K to 8K)

20h Erase block1 (8K to 16K)

40h Erase block2 (16K to 32K)

FFh
Full chip Erase (bits at
FFh)
22 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Answers from Bootloader The device has two possible answers to a DFU_GETSTATUS request:

• If the chip is protected from program access, a “err_WRITE” status is returned to the
Host.

• Otherwise, the device status is “OK“.

The full chip erase is always executed whatever the Software Security Byte value is.

Starting the Application The flow described below allows to start the application directly from the bootloader
upon a specific command reception.

Two options are possible:

• Start the application with a reset pulse generation (using watchdog).
When the device receives this command the watchdog is enabled and the
bootloader enters a waiting loop until the watchdog resets the device.
Take care that if an external reset chip is used the reset pulse in output may be
wrong and in this case the reset sequence is not correctly executed.

• Start the application without reset
A jump at the address 0000h is used to start the application without reset.

To start the application, the Host sends a DFU_DNLOAD request with the specified
application start type in the data field (3 or 5bytes).

This request is immediately followed by a second DFU_DNLOAD request with no data
field to start the application with one of the 2 options.

Request From Host

Answer from Bootloader No answer is returned by the device.

Command
Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_write_command

04h 03h

00h Hardware reset

01h address LJMP address

IN Jump O

SETUP DFU_UPLOAD

OUT ZLP

SETUP DFU_UPLOAD

ption (3 or 5 Bytes)
23
4287C–USB–11/04

In-Application
Programming/Self
Programming

The IAP allows to reprogram a microcontroller on-chip Flash memory without removing
it from the system and while the embedded application is running.

The user application can call Application Programming Interface (API) routines allowing
IAP. These API are executed by the bootloader.

To call the corresponding API, the user must use a set of Flash_api routines which can
be linked with the application.

Example of Flash_api routines are available on the Atmel web site on the software
package:

C Flash Drivers for the AT89C5131A for Keil® Compilers

The flash_api routines on the package work only with the USB bootloader.

The flash_api routines are listed in APPENDIX-B.

API Call

Process The application selects an API by setting the 4 variables available when the flash_api
library is linked to the application.

These four variables are located in RAM at fixed address:

• api_command: 1Ch

• api_value: 1Dh

• api_dph: 1Eh

• api_dpl: 1Fh

All calls are made through a common interface “USER_CALL” at the address FFC0h.

The jump at the USER_CALL must be done by LCALL instruction to be able to come-
back in the application.

Before jump at the USER_CALL, the bit ENBOOT in AUXR1 register must be set.

Constraints The interrupts are not disabled by the bootloader.

Interrupts must be disabled by user prior to jump to the USER_CALL, then re-enabled
when returning.

Interrupts must also be disabled before accessing EEPROM data then re-enabled after.

The user must take care of hardware watchdog before launching a Flash operation.

For more information regarding the Flash writing time see the AT89C5131A datasheet.
24 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
API Commands Several types of APIs are available:

• Read/Program Flash and EEPROM Data Memory

• Read Configuration and Manufacturer Information

• Program Configuration Information

• Erase Flash

• Start Bootloader

Read/Program Flash and
EEPROM Data Memory

All routines to access EEPROM data are managed directly from the application without
using bootloader resources.

To read the Flash memory the bootloader is not involved.

For more details on these routines see the AT89C5131A datasheet sections “Pro-
gram/Code Memory” and “EEPROM Data Memory”

Two routines are available to program the Flash:

– __api_wr_code_byte

– __api_wr_code_page

• The application program load the column latches of the Flash then calls the
__api_wr_code_byte or __api_wr_code_page see datasheet in section
“Program/Code Memory”.

• Parameter settings

• instruction: LCALL FFC0h.
Note: No special resources are used by the bootloader during this operation

API Name api_command api_dph api_dpl api_value

__api_wr_code_byte

__api_wr_code_page
0Dh
25
4287C–USB–11/04

Read Configuration and
Manufacturer Information

• Parameter settings

• Instruction: LCALL FFC0h.

• At the complete API execution by the bootloader, the value to read is in the
api_value variable.

Note: No special resources are used by the bootloader during this operation

API Name api_command api_dph api_dpl api_value

__api_rd_HSB 08h 00h return HSB

__api_rd_BSB 05h 00h return BSB

__api_rd_SBV 05h 01h return SBV

__api_rd_P1_CF 05h 02h return P1_CF

__api_rd_P3_CF 05h 03h return P3_CF

__api_rd_P4_CF 05h 04h return P4_CF

__api_rd_SSB 05h 05h return SSB

__api_rd_EB 05h 06h return EB

__api_rd_manufacturer 05h 30h
return

manufacturer id

__api_rd_device_id1 05h 31h return id1

__api_rd_device_id2 05h 60h return id2

__api_rd_device_id3 05h 61h return id3

__api_rd_bootloader_version 0Eh 00h return value
26 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Program Configuration
Information

• Parameter settings

• instruction: LCALL FFC0h.
Notes: 1. See in the T89C51CC01 datasheet the time that a write operation takes.

2. No special resources are used by the bootloader during these operations.

Erasing the Flash The AT89C5131A Flash memory is divided in several blocks:

Block 0: from address 0000h to 1FFFh

Block 1: from address 2000h to 3FFFh

Block 2: from address 4000h to 7FFFh

These three blocks contain 128 pages.

• Parameter settings

• instruction: LCALL FFC0h.
Notes: 1. See the AT89C5131A datasheet for the time that a write operation takes and this time

must multiply by the number of pages.
2. No special resources are used by the bootloader during these operations.

API Name api_command api_dph api_dpl api_value

__api_clr_BLJB 07h
(HSB & BFh) |

40h

__api_set_BLJB 07h HSB & BFh

__api_clr_X2 07h
(HSB & 7Fh) |

80h

__api_set_X2 07h HSB & 7Fh

__api_clr_OSCON1 07h
(HSB & DFh) |

20h

__api_set_OSCON1 07h HSB & DFh

__api_clr_OSCON0 07h
(HSB & EFh) |

10h

__api_set_OSCON0 07h HSB & EFh

__api_wr_BSB 04h 00h value to write

__api_wr_SBV 04h 01h value to write

__api_wr_P1_CF 04h 02h value to write

__api_wr_P3_CF 04h 03h value to write

__api_wr_P4_CF 04h 04h value to write

__api_wr_SSB 04h 05h value to write

__api_wr_EB 04h 06h value to write

API Name api_command api_dph api_dpl api_value

__api_erase_block0 00h 00h

__api_erase_block1 00h 20h

__api_erase_block2 00h 40h
27
4287C–USB–11/04

Starting the Bootloader This routine allows to start at the beginning of the bootloader as after a reset. After call-
ing this routine the regular boot process is performed and the communication must be
opened before any action.

• No special parameter setting

• Set bit ENBOOT in AUXR1 register

• instruction: LJUMP or LCALL at address F400h
28 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Appendix-A
Table 10. Summary of Frames from Host

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_prog_start

01h

00h
start_address end_address

Init FLASH programming

01h Init EEPROM programming

Id_display_data

03h

00h

start_address end_address

Display FLASH Data

01h Blank Check in FLASH

02h Display EEPROM Data

Id_write_command

04h

00h

00h Erase block0 (0K to 8K)

20h Erase block1 (8K to 16K)

40h Erase block2 (16K to 32K)

FFh Full chip Erase (bits at FFh)

01h

00h

Value

Write value in BSB

01h Write value in SBV

02h Write P1_CF

03h Write P3_CF

04h Write P4_CF

05h Write value in SSB

06h Write value in EB

02h 00h Value Write value in Fuse (HSB)

03h
00h Hardware reset

01h address LJMP address
29
4287C–USB–11/04

Table 11. DFU Class-specific Requests

Table 12. USB Parameters

Table 13. Hardware Security Byte (HSB)

Id_read_command

05h

00h

00h Read Bootloader Version

01h Read Device boot ID1

02h Read Device boot ID2

01h

00h Read BSB

01h Read SBV

02h Read P1_CF

03h Read P3_CF

04h Read P4_CF

05h Read SSB

06h Read EB

30h Read Manufacturer Code

31h Read Family Code

60h Read Product Name

61h Read Product Revision

02h 00h Read HWB

Table 10. Summary of Frames from Host (Continued)

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_DETACH (0) wTimeout Interface (4) Zero none

0010 0001b DFU_DNLOAD (1) wBlock Interface (4) Length Firmware

1010 0001b DFU_UPLOAD (2) wBlock Interface (4) Length Firmware

1010 0001b DFU_GETSTATUS (3) Zero Interface (4) 6 Status

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) Zero none

1010 0001b DFU_GETSTATE (5) Zero Interface (4) 1 State

0010 0001b DFU_ABORT (6) Zero Interface (4) Zero none

Parameter Atmel

Vendor ID 0x03EB

Product ID 0x2FFD

Release Number 0x0000

7 6 5 4 3 2 1 0

X2 BLJB OSCON1 OSCON0 LB2 LB1 LB0
30 AT89C5131A USB Bootloader
4287C–USB–11/04

AT89C5131A USB Bootloader
Appendix-2
Table 14. API Summary

Function Name
Bootloader
Execution api_command api_dph api_dpl api_value

__api_rd_code_byte no

__api_wr_code_byte yes 0Dh

__api_wr_code_page yes 0Dh

__api_erase block0 yes 00h 00h

__api_erase block1 yes 00h 20h

__api_erase block2 yes 00h 40h

__api_rd_HSB yes 08h 00h return value

__api_clr_BLJB yes 07h (HSB & BFh) | 40h

__api_set_BLJB yes 07h HSB & BFh

__api_clr_X2 yes 07h (HSB & 7Fh) | 80h

__api_set_X2 yes 07h HSB & 7Fh

__api_clr_OSCON1 yes 07h (HSB & DFh) | 20h

__api_set_OSCON1 yes 07h HSB & DFh

__api_clr_OSCON0 yes 07h (HSB & EFh) | 10h

__api_set_OSCON0 yes 07h HSB & EFh

__api_rd_BSB yes 05h 00h return value

__api_wr_BSB yes 04h 00h value

__api_rd_SBV yes 05h 01h return value

__api_wr_SBV yes 04h 01h value

__api_erase_SBV yes 04h 01h FFh

__api_rd_P1_CF yes 05h 02h return value

__api_wr_P1_CF yes 04h 02h value

__api_rd_P3_CF yes 05h 03h return value

__api_wr_P3_CF yes 04h 03h value

__api_rd_P4_CF yes 05h 04h return value

__api_wr_P4_CF yes 04h 04h value

__api_rd_SSB yes 05h 05h return value

__api_wr_SSB yes 04h 05h value

__api_rd_EB yes 05h 06h return value

__api_wr_EB yes 04h 06h value

__api_rd_manufacturer yes 05h 30h return value

__api_rd_device_id1 yes 05h 31h return value
31
4287C–USB–11/04

__api_rd_device_id2 yes 05h 60h return value

__api_rd_device_id3 yes 05h 61h return value

__api_rd_bootloader_version yes 0Eh 00h return value

__api_eeprom_busy no

__api_rd_eeprom_byte no

__api_wr_eeprom_byte no

__api_start_bootloader no

__api_start_isp no

Table 14. API Summary (Continued)

Function Name
Bootloader
Execution api_command api_dph api_dpl api_value
32 AT89C5131A USB Bootloader
4287C–USB–11/04

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

© Atmel Corporation 2004. All rights reserved. Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its
subsidiaries. Windows® is a registered trademark of Microsoft Corporation. Linux® is a registered trademark of Linus Torvalds. Keil® is a regis-
tered trademark of Keil Corporation. Other terms and product names may be the trademarks of others.
 Printed on recycled paper.

4287C–USB–11/04

